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The tempera ture  field in the ro to r  of a thermal ly  s t ressed  high-speed electr ical  machine 
is investigated. The problem is solved on a computer by the grid method. Results  of com-  
putation of the t empera tu re  field in the ro tor  for different conditions of cooling a re  presented. 

The study of the exact distribution of the temperature field in an electrical machine is of considerable 
interest, because the temperature level determines the service life and the reliability of operation of the 
machine. A predetermination of the temperature field is especially important for the rotors of thermally 
stressed high-speed machines, in which a direct measurement of temperatures is very difficult and some- 

times impossible from considerations of strength. 

There are several known methods of computing temperature in an electrical machine. 

I) The method of equivalent thermal conversion circuits is only approximate; it can only yield the 
average temperatures of the elements of the electrical machine [1, 2]. 

2) The electrical modeling of heat propagation enables one to determine the temperature field, but 
it requires the construction of special modeling (analog) equipment [3, 4]. 

3) Analytical methods of determining the temperature field have the disadvantage that an analytical 
solution can only be obtained for linear problems with boundary conditions such as will permit the 
separation of variables [5, 6], and for a small number of problems of nonlinear heat conduction 

[6, 7]. 

4) Numerica l  methods of computing the  tempera ture  field offer good prospects  of obtaining com-  
plete information about the heat propagation in a short  time. 

The complete determination of the t empera tu re  field in an electr ical  machine in different operating 
modes and for different methods of cooling is a very  difficult problem, since in general  it is necessary  to 
solve three-d imensional  nonlinear heat-propagat ion equations together with nonlinear hydrodynamic equa- 
tions and the equations of e lect romagnet ic  p rocesses  in the e lect r ical  machine. Therefore  a number of a s -  
sumptions a re  made in order  to simplify the problem; as the information builds up these assumptions have 

to be refined. 

In the present  work, the t empera tu re  field in the t r ansve r se  c ross  section of an e lect r ical  machine 
is investigated under s teady-s ta te  operat ing and cooling conditions. Heat generation due to losses  is cha r -  
ac ter ized by values obtained experimentally.  The heat distribution in the cooling liquid is not taken into 
consideration, and the heat elimination is descr ibed in t e rms  of the average  t empera tu re  of the liquid and 
the average  hea t - t r ans fe r  coefficient. The thermophysical  proper t ies  of the mater ia ls  a re  assumed con- 

stant. 

The construct ion of the machine under considerat ion is shown in Fig. 1, where the main details of 
the ro tor  and the s tator  in the t r a n s v e r s e  section of the machine a re  depicted. In view of symmetry ,  only 

one sector  of the machine is shown. 
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Fig. 1 Fig. 2 

Fig. 1. A sec tor  of the t r ansverse  section of the e lec t r ica l  machine:  
1) f rame;  2) cooling channel for the s ta tor ;  3) s ta tor  core ;  4) groove 
insulation; 5) s ta tor  winding; 6) groove wedge; 7) damper  rods;  8) 
ro to r  core ; 9) ro tor  shaft; 10) excitation coil ; 11) f r ame  insulation of 
the excitation coil;  12) interpole wedge; 13) gap between the ro tor  
and s ta tor .  

Fig. 2. Computational model of a ro tor .  

The s ta tor  is cooled by a liquid flowing in the channels between the f rame of the machine and the 
laminated core.  The ro tor  is cooled by pumping the liquid into its hollow shaft and the channels between the 
excitation coils;  the interpole wedge is also cooled in this process .  

The t empera tu re  field is only determined in the ro tor  of the e lect r ical  machine, and the thermal  
coupling with the s tator  is taken into considerat ion by specifying the thermal  flux between the ro tor  and the 
stator.  The complete problem of determining the t empera tu re  field over the entire sec tor  of the machine 
will be investigated later.  Even the t r ansve r se  section of the ro to r  alone has very  complex boundaries and 
includes many diverse  elements;  the s impler  model, shown in Fig. 2, was therefore  chosen for the com-  
putation. 

The simplifications introduced a re  evident f rom a compar ison of Figs. 1 and 2: the damper winding 
rods a re  excluded f rom the discussion,  a s impler  geomet ry  of the excitation coil is used, and its f r ame  in- 
sulation is omitted. 

These simplifications a re  expedient in working out the computational program;  they also permit  a 
qualitative compar ison  of the obtained resul t s  with known resul ts  [8]. 

Heat evolution of density qiV occurs  in the region of the coil IV only. In the remaining regions I, II, 
and III there  is no heat evolution. The surface  losses  and the losses  in the damper winding a re  given in 
the fo rm of a thermal  flux into the region a c r o s s  its boundary, computed f rom the thermal  conversion c i r -  
cuit and the heat-balance equation. 

In region IV of the excitation coils the heat propagation is described by Foisson ' s  equation 

O~TIv ~52TIv qlv ax ~ + a~ ~- = -  xl--~' 

where TIV is the t empera tu re  in the region of the coil; ~IV is the thermal  conductivity of the coil; and x, y 
a re  the coordinates.  
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In regions I, II, and III the heat distribution is descr ibed by the Laplace equation 

O~T~ + d2Ti = 0 ,  
Ox ~ Oy ~ 

where i = I, II, and III is the index of the corresponding region. 

In order  to solve the equation it is neces sa ry  to specify the boundary conditions on all the boundaries 
of the model and also the coupling conditions between the regions.  These a re  obtained f rom the r equ i re -  
ment that the t empera tures  and thermal  fluxes at the boundaries of different media should be continuous. 

At the boundaries b - c ,  e - f ,  l - a  the condition 

0T 
- - = 0 .  
On 

is satisfied by vir tue of the thermal  symmetry .  The experimental ly  obtained value is specified at the 
boundary a - b .  

There  is a flow of heat between the s tator  and the ro tor  along the entire boundary c - d - e ;  the su r -  
face losses  and losses  in the damper  have to be taken into considerat ion along c - d .  

At the boundary a - b  the boundary condition has the form 

OT~ 
- -  ~I  = P~b, 

On 

where XI is the coefficient of thermal  conductivity of region I; Pab is the specific thermal  flux ac ros s  the 
boundary a - b ;  n is the normal  to the boundary. The condition at the boundary c - d  is 

- -  ~I1 a T i i  _ Peg; 
On 

at the boundary e - d  

0Tni --~m --=--P~a; 
an 

at the boundary f - g  

0TIII 
- - k l I i  - -  = Pfg; 

On 

at the boundary g - h - k - /  

OTIv p , 
- - k I v  ~ ghkZ 

where ~i is the thermal  conductivity of the corresponding region; and P is the flux ac ros s  unit surface of 

the region. 

The Laplace and Poisson equations cannot be solved analytically,  since the complexity of the boundary 
conditions does not permit  separat ion of the variables.  

In o rder  to secure  a numerica l  solution of the equations of the tempera ture  field with boundary con- 
ditions of the mixed type, it is n e c e s s a r y  to specify the values of the constants charac ter iz ing  the hea t -con-  
ducting proper t ies  of the mater ia l s  used, the numerical  values of the thermal  fluxes, or the values of the 
t empera tu res  at the outer boundaries of the model. 

For region IV the thermal conductivity AIV is taken as the resultant value of the thermal conductivity 
of the whole coil, which is regarded as being rectangular wire. The thermal conductivity coefficients for 
regions I, II, and Ill are chosen in accordance with the average temperatures in these regions. 

In all the computations the coefficients of thermal conductivity had the following values: 

kx----9.4; )~n =20; 

k I I I =  168; kiV = 2.76 W/m. ~ 
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~33~ 

b ~ 053' 

Fig. 3. Tempera ture  field of the ro to r  for  Tab = 4 6 3 ~ s  
and T a b :  443~K (a). 

The equivalent thermal  convers ion circuit  of the entire e lect r ical  machine was solved for different 
operating conditions and different methods of cooling in order  to determine the thermal  fluxes in the rotor .  

The t empera tu res  at some of the outer boundaries computed in this way were compared with ex- 
per imenta l ly-determined t empera tu res  and taken as a basis  for  the numerica l  computation. 

All the neces sa ry  data for ca r ry ing  out the numerica l  computation of the t empera tu re  field in the 
t r ansve r se  section of the e lect r ical  machine were obtained in this way. 

The hea t - t r ans fe r  equation with mixed- type boundary conditions and with selected values of the the r -  
mophysical  pa ramete r s  of the mate r ia l s  and thermal  fluxes was solved by the grid method. For  this pur-  
pose the differential equations and the boundary conditions were  replaced by f ini te-difference equations and 
conditions. All the regions of the computing model were covered with a square grid of identical step h; 
the value of the step was varied in est imating the accuracy  of the computation. 

The Laplace equation has the form 

Ti_l,7 -~- Ti.j_l 4- Ti+l,j ~- Ti,]+l - -  4 T~, i ---- O, 

where i and j a re  the indices of the grid point. 

In the grid model, Po i s son ' s  equation is wri t ten in the form 

T i l i - { - T ~ ] , +  T i I ~ + T ~ : + ~ - - 4 T  1 2 = -  h2qIvv' 

It is well known that in this ease the e r r o r  of the approximation is O(h2). 

For  points at a distance smal le r  than h / 2  f rom the lines separat ing two regions the difference analog 
of the coupling condition is taken. 

For  example, in the case  of points at a distance of less than a half step f rom the line separat ing r e -  
gions I and II this condition has the fo rm 

' 1 + C12 (Ti+l'Y-~l -~- C12Ti-l'j-1) .qt_ 1 (Ti , j~ 1 @ Cl2Ti,j_l) , 

where C12 = ~i / ~II. For  points at dis tances of less than a half step f rom the line separat ing regions II and 
III the coupling condition has the fo rm 

1 
Tis = 2(1 + Cz~) [T'+I"s-~ + r~,y_~ -t- C23(ri,s+x -~ T~_~,j+0], 

where C23 = ;~II/XIII. 
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way. 

The derivat ives along the inward normal  a re  approximated in the boundary conditions in a s imi lar  
At the boundary c - d  the difference analog of the boundary condition is the following: 

Ti ~ = x~ (Ti_Lj_I __ T~.j_I ) + Ti.j_l + 
Y1 \ YJ 

at the boundary d - e  

at the boundary e - f ,  l - a  

l;--F7 Ti i = x-L (Ti_I,j_I - -  Zij-1) + T,.i-1 + I -k -~A =; 
yj ,~IIr v ~ y j /  

Til = ~-~-~ (T~-l.j+l-- Ti-l,i) 2F Ti-l.J; 

at the boundary f - g  

Til -- 3 
2hP1,, 

(Ti+i.i+l - -  T~j+I) + Ti j+l ' ]'' 3 - ~ I I 1  

at the boundary g - h ,  k - l  

hPghhl 
T~j--- Ti_~, j ~iv 

at the boundary h - k  

h P g h h l  . 

~ I V  

at the boundary b - c  

Toj = Tl1 ; 

at the boundary a - b  

Ti I = x__~i (ri+,,j_ 1 _ Tf,/+I ) q_ yi  j+l hPab /" { Xi I ~ yj ' ~I ]// 1 + \ 7 / "  

As a resul t  of the replacement  of the differential equations by difference equations and the boundary 
conditions by difference boundary conditions a sys tem of l inear a lgebraic  equations is obtained; the order  
of the sys tem is equal to the number of nodes of the sec tor  in which the solution is sought. 

The method of block i teration (explicit scheme) is used to solve the sys tem of l inear algebraic  equa- 

tions. 

The accuracy  e with which the computations a re  to be made is specified before the s tar t  of the i t e ra -  

tion process .  

In regions I, II, and III the computation was car r ied  out according to the formula 

T(k) 1 (T}~1,1 + *e,i-. + *i+x,i -r *i,i+l,, : , r ( k )  T ,.r,(k~l) _ _  -T,(k--l)~ 

where (k) is the number of the i terat ion;  and (k - 1) is the number of the preceding iteration. 

In region IV the computation is ca r r ied  out using the formula 

h~qlv 
r~) = 4-1 Ii-1.1- r + T~I~]_, + 7"~I~,~_'1 ) + T~!]:7.})+ ~ } �9 

The computation ends when the condition 

t , l  

is satisfied. 
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The p r o g r a m  is  compi led  in  the a l g o r i t h m i c  l anguage  "Algol-60.  ' 

The r e s u l t s  of a n u m e r i c a l  computa t ion  of the h e a t - t r a n s f e r  equa t ions  a t  450 nodal  points  of the gr id  

a r e  p r e s e n t e d  in Fig.  3a and b. We sha l l  now a n a l y z e  these  r e s u l t s .  

The i s o t h e r m s  of the t e m p e r a t u r e  f ield of the r o t o r  a r e  plotted in Fig.  3a for  the fol lowing va lues  of 

the p a r a m e t e r s :  

qiv = 2.540.106 W/rn 2 

P~d == 2.038.104 W/m 2 

Pfa ~ 4.080.104 W/m 2 

Pab ~- 1.316.10 ~ W/m 2 

Ped = 0.298.10 ~ W/m 2 

PgJ,~t = 2.530.104 W/m 2 

Tab = 463 ~ 

The paths of the thermal flux in the rotor may be clearly traced from the isotherms of Fig. 3a. Al- 

most all the losses in the excitation coil pass through the surface directly washed by the liquid; a small 
part of the losses pass the interpole wedge, the rotor core, and the hollow shaft. The surface and damper 
losses are transferred to the coolant through the interpole wedge and the rotor core. The distribution of 
the heat flux may be qualitatively estimated from the density of the isotherms and the sections across which 

these thermal fluxes pass. 

Figure 3b shows a temperature field corresponding to more intensive heat transfer. The thermal 
flux along the corresponding boundaries remains the same as before, but the temperature level is lowered 
due to the increase in the heat-transfer coefficient. The maximum temperature in the coil has become 
464~ and its position has moved closer to the interpole wedge; this is due to a redistribution of the thermal 

flux. 

The following conclusions may be drawn from the analysis of these computations. 

The temperature fields presented in the figures give a clear picture of the distribution of the tem- 
perature field and the path along which the thermal flux travels in the rotor of a thermally stressed machine. 
In the absence of cooling in the gap between the rotor and the stator, the most strongly heated part of the 
excitation coil is that immediately adjoining the core and the interpole wedge. A clearly defined maximum 
of the temperature field occurs in the region of the excitation coil. The position of the point of maximum 
temperature changes with changing operating and cooling conditions; this is clearly seen from a comparison 
of Fig. 3a and b. If the rotor is also cooled in the gap between the rotor and the stator, the coil itself 
becomes the most thermally stressed region in the rotor, which is hazardous from the point of view of 
electrical insulation cost. Any intensification of the cooling of the rotor leads, of course, to a reduction 
in the temperature level, which is evident from Fig. 3a and b. The paths of the thermal flux lie along the 
normals to the isotherms and their intensity may be estimated from the density of the isotherms in separate 
segments of the rotor. The complete pattern of the temperature field distribution enables us to estimate the 
efficiency of different methods of cooling and choose the most suitable cooling conditions, which is important 
in the construction of electrical machines. 

The fact that several regions (the insulation of the excitation coil, the regions of the damper windings 
(see Fig. i)) are not represented in the model somewhat reduces the value of the computations in the sense 
of the completeness of the temperature-field pattern in a real machine; however, this simplified model en- 
ables us to compile a computation program, to estimate its accuracy, and to obtain temperature-field dis- 
tribution patterns in qualitative agreement with the computations of [8]. 

The computation of one particular version of the temperature field of the rotor at 450 points in the 
region takes 19 rain on the "M-20" computer. The program enables us to investigate different cooling con- 
ditions in machines with different constructional materials. 
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